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Abstract—Spectral band power features are one of the most 

widely used features in the studies of electroencephalogram 
(EEG)-based emotion recognition. The power spectral density of 
EEG signals is partitioned into different bands such as delta, theta, 
alpha and beta band etc. Though based on neuroscientific 
findings, the partition of frequency bands is somewhat on an ad-
hoc basis, and the definition of frequency ranges of the bands of 
interest can vary between studies. On the other hand, it is also 
arguable that one definition of power bands could perform equally 
well on all subjects. In this paper, we propose to use autoencoder 
to automatically learn from each subject the salient frequency 
components from power spectral density estimated as 
periodogram by Fast Fourier Transform (FFT). We propose a 
network architecture especially for EEG feature extraction, one 
that adopts hidden unit clustering with added pooling neuron per 
cluster. The classification accuracy with features extracted by our 
proposed method is benchmarked against that with standard 
power features. Experimental results show that our proposed 
feature extraction method achieves accuracy ranging from 44% to 
59% for three-emotion classification. We also see a 4-20% 
accuracy improvement over standard band power features. 
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I. INTRODUCTION 
Affective brain-computer-interface (BCI) [1] envisions an 

emotion-aware interaction between human and machine. The 
goal of an affective BCI is to detect the emotion states of the 
user via electroencephalogram (EEG) signals and to respond to 
the user accordingly. Such a BCI could potentially enrich the 
user’s experience during the interaction with a machine. EEG-
based affective BCI does not rely on explicit inputs from the 
user, but on direct measurement of spontaneous brain activities. 
Thus, this modality could potentially reveal the truly-felt 
emotions of the user. 

A closed-loop affective BCI generally consists of signal 
acquisition, feature extraction, neural pattern classification and 
feedback to the user. Feature extraction and neural pattern 
classification are arguably the most crucial parts in the loop. 
Spectral band power features have been one of the most widely 

used feature [2] in BCI studies and EEG-based applications. 
Despite their popular use, however, there lacks a consensus on 
the definition of frequency ranges—different studies respect 
different definitions. On the other hand, we argue that the most 
discriminative frequency components with respective to the task 
in question are subject-specific, that is, it is difficult to find a 
common definition of frequency ranges that could perform 
equally well on all subjects. In view of this, we propose to use 
autoencoder to learn from each subject the subject-specific, 
salient frequency components from the power spectral density 
of EEG signals. Building upon the trained autoencoder, we 
propose a network architecture especially for EEG feature 
extraction, one that adopts hidden neuron clustering with added 
pooling neuron per cluster. The classification performance using 
features extracted by our proposed method is benchmarked 
against that using band power features. 

The remainder of the paper is organized as follows. Section 
II introduces the dataset based on which we carry out the 
experiment. Section III explains the methodologies. Section IV 
documents the experiments. Section V presents the experimental 
results with discussions. Section VI concludes the paper. 

II. DATASET 
In this study, we use a publicly available affective EEG 

dataset SEED contributed by Zheng et al. [3]. The dataset 
contains 15 subjects, each subject taking three recording 
sessions during one month at an interval of two weeks between 
successive sessions. In each session, each subject was presented 
fifteen movie clips to induce the desired emotional states: 
positive, neutral and negative, with five movie clips assigned to 
each emotion. Sixty-two-channeled (see Fig. 1) EEG signals 
were simultaneously recorded when the subject was exposed to 
the affective stimuli, at a sampling rate of 1000 Hz. The EEG 
signals were then down-sampled to 200 Hz and post-processed 
by a 0-75 bandpass filter by the authors. The same affective 
stimuli were used for all three sessions. The resultant dataset 
contains fifteen EEG trials corresponding to fifteen movie clips 
per subject per session. Each trial lasts for three to five minutes, 
depending on the length of the movie clip. The trial IDs and their 
corresponding emotion states are listed in Table I. 
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III. METHODS 
Before feature extraction, we visually inspect the signal 

quality of all trials. Twenty-one EEG channels are rejected due 
to signal quality issues (e.g., loose electrode contact). The 
remaining 41 channels are used for further processing, including 
AF3, C2, C3, C4, C5, C6, CB1 (cerebellum), CB2, CP1, CP2, 
CP3, CP4, CP5, F1, F4, F6, F8, FC1, FC3, FC4, FC6, FP1, FP2, 
FPZ, FT7, FT8, FZ, O1, O2, OZ, P2, P4, P6, P8, PO4, PO5, 
PO7, PO8, PZ, TP7 and TP8, as shown in Fig. 1. All EEG trials 
except the shortest one are truncated at the end to have the same 
length as the shortest trial, which is 185-second. Each EEG trial 
is then segmented to multiple 4-second-long sections (each 
section equaling to 800 sampling points) without overlapping 
between any two successive sections. As such, each trial yields 
46 sections. Features are extracted out of each section. 

A. Power Feature Extraction 
Band power features are one of the most widely used 

features in the context of EEG-based emotion recognition [2]. 
Though based on neuroscientific findings, the frequency band 
ranges of interest are somewhat defined on an ad-hoc basis and 
vary between studies. In our study, we follow such definition 
[2]: delta band (1-4 Hz), theta band (4-8 Hz), alpha band (8-12 
Hz) and beta band (12-30 Hz). We does not include the gamma 
band (>30 Hz) in this study, as the gamma components are more 
artefact-prone. 

Let 𝑋 ∈ ℝ௦×௧ be one section of EEG signals, where 𝑠 = 41 
is the number of channels and 𝑡 = 800 the number of points 
sampled. The power spectral density of 𝑋(𝑖, : ) is estimated as 
periodogram by Fast Fourier Transform (FFT), where 𝑋(𝑖, : ) is 
the 𝑖th row of 𝑋. Since one row comprises 800 points sampled 
at a rate of 200 Hz, the resolution of the periodogram is 0.25 Hz. 
The power features are computed by averaging the periodogram 
over the target frequency ranges defined above. The final feature 
vector is a concatenation of the features of the same frequency 
band derived from all 41 channels. The dimension of the feature 
vector is 41 when using delta band, theta band, alpha band or 

beta band alone. In addition, we also combine all power bands 
at feature level by concatenating the feature vectors of four 
bands. The feature vector is of 41×4 = 164 dimension. Each trial 
yields 46 samples per feature. 

B. Autoencoder 
An autoencoder is a neural network that is trained to produce 

outputs approximating to its inputs [4]. The structure of a simple 
feedforward, nonrecurrent autoencoder with one hidden layer is 
shown in Fig. 2. The objective of the autoencoder is to make 𝒙ෝ 
resemble x. Autoencoder can be trained using the 
backpropagation algorithm [4]. The training does not involve the 
class labels of the data and is on an unsupervised basis. 
However, we are not particularly interested in the output 𝒙ෝ . 
Instead, we are more interested in the output of hidden layer, 𝒉. 
When the hidden layer has fewer neurons than the input layer, 𝒉 
is a compressed representation of 𝒙 and has to capture the most 
salient feature of 𝒙 [4] in order to be able to reproduce it at the 
output layer. 𝒉 could then be used for further feature learning or 
as the feature vector of 𝒙 for classification or regression. 

1) Proposed Structure 
In this study, we leverage autoencoder to automatically learn 

the salient frequency components from the periodogram instead 
of predefining the frequency ranges such as delta, theta, alpha 
and beta. The input to the autoencoder is the raw periodogram 
from 1 to 30 Hz with a resolution of 0.25 Hz. The dimension of 
the periodogram is 117-D, thus the input layer and output layer 
both consist of 117 neurons. The hidden layer consists of 𝑘 
neurons. After the autoencoder has been trained, the hidden 
neurons have learnt the salient frequency components over 1-30 
Hz. Such information is encoded in the weight vectors of the 
hidden neurons. We hypothesize that hidden neurons carrying 
similar weights have learnt similar frequency components. We 
propose to cluster the hidden units into several groups by their 
weight vectors. A mean pooling neuron is added on top of each 
group to aggregate the outputs from all hidden neurons that are 
in the same cluster. The outputs of the mean pooling neurons are 
considered features learnt from the raw periodogram, which are 

TABLE I.  TRIAL IDS AND THEIR CORRESPONDING EMOTION 
STATES. 

Trial IDs Induced Emotion 
1, 6, 9, 10, 14 Positive 
2, 5, 8, 11, 13 Neutral 
3, 4, 7, 12, 15 Negative 

 
Fig. 1 The placement of 62 EEG electrodes. Shaded channels are used 
in this study. Other channels are rejected due to signal quality issues. 
(Figure adapted from [3].) 

 
Fig. 2 Example of an autoencoder with one hidden layer. 𝒙 is the input 
to the network, 𝒉 = 𝑓(𝑊(ଵ)𝒙 + 𝒃(ଵ)) and 𝒙ෝ = 𝑔(𝑊(ଶ)𝒉 + 𝒃(ଶ)), where 𝒉 
is the output of hidden neurons (also known as code), 𝑊(ଵ) is the weights 
between hidden layer and input layer, 𝒃(ଵ)  is the bias vector of hidden 
neurons (not drawn in the figure), 𝑓(∙) is the activation function of hidden 
neurons (also known as transfer function), 𝑊(ଶ) is the weights between 
hidden layer and output layer, 𝒃(ଶ) is the bias vector of output neurons, 𝑔(. ) is the activation function of output neurons. The network is trained to 
reproduce input 𝒙 at the output layer. 
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essentially weighted power features, but without predefinition of 
band ranges. The final feature vector is the concatenation of 
features derived from 41 channels. The dimension of the final 
feature vector is therefore 41𝑚 , where 𝑚  is the number of 
clusters of hidden neurons. The proposed network structure is 
illustrated in Fig. 3. 

IV. EXPERIMENTS 
We benchmark the performance of standard power features 

against features that are automatically learnt by autoencoder 
under our proposed structure. The performance is measured by 
accuracy discriminating the three emotion states. Since there are 
3 classes to be classified, the theoretical chance level is 33.33%. 

A. Using standard power features 
We evaluate the classification accuracy on a per-subject 

basis by five-fold cross validation. Within one session, the 
fifteen trials from the subject in question are partitioned into five 
folds as follows. Fold 1 = {trial #1,2,3}, fold 2 = {trial #4, 5, 6}, 
fold 3 = {trial #7, 8, 9}, fold 4 = {trial #10, 11, 12} and fold 5 = 
{trial #13, 14, 15}. Each fold contains one trial for each emotion. 
We train the classifier with four folds and test the classifier with 
the remaining fold. As such, the training set comprises 46×3×4 
= 552 training samples and the test set consists of 46×3 = 138 
test samples. The process is repeated five times until each fold 
has served as test set for exactly once. The per-subject 
classification accuracy is averaged over five runs. The overall 
mean accuracy is the average per-subject accuracy over fifteen 
subjects. In this experiment, we adopt logistic regression 
classifier [5] with line search strategy. The training process stops 
at maximal 100 iterations. 

B. Using features learnt by autoencoder with the proposed 
structure 
Firstly, we need to train the autoencoder to reconstruct the 

input data (periodograms). Based on the same partition scheme 
as used in Section IV.A, we set aside one fold as test set, and the 

remaining four folds are pooled together as training set. The 
training set comprises 46×41×3×4 = 22632 periodograms. The 
test set consists of 46×41×3 = 5658 periodograms. Eighty-five 
percent of the data randomly sampled from the training set are 
used as actual training data by the autoencoder, and the rest 
fifteen percent of the data in the training set are used as 
validation data to select the best weights, that is, the weight 
parameters that lead to the minimal reconstruction error on the 
validation data. In this experiment, we use one hidden layer with 𝑘 = 100 hidden neurons. Input data are 117-D raw periodogram 
covering 1-30 Hz frequency range. Thus, the autoencoder 
architecture is 117 (input neurons)-100 (hidden neurons)-117 
(output neurons). Linear activation function is used in all layers. 
The reconstruction error between input 𝒙  and output 𝒙ෝ  is 
measured by mean squared error. The whole network is trained 
using backpropagation and batch gradient descent with batch 
size equal to 256. Training stops at maximal 50 epochs. The 
weight parameters that minimize the reconstruction error on 
validation data are retained. After the autoencoder has been 
trained, the output layer is removed from the network. We then 
employ 𝑘 -means algorithm to cluster the hidden units to 𝑚 
groups based on the similarity of their weight vectors, 𝑚 varies 
from 1 to 10. A mean pooling neuron is added on top of each 
group to aggregate the outputs, as is shown in Fig. 3. The outputs 
of the mean pooling neurons are viewed as features extracted out 
of the periodogram. The training data, validation data and test 
data are fed to the trained network with added pooling layers to 
extract features. The final feature vector is a concatenation of 
features from 41 channels. The classifier (same configuration as 
what is used in Section IV.A) is trained on training data pooled 
with validation data, and tested on the test data. As such, the 
training data and validation data together contribute 552 training 
samples to the classifier. The test data contribute 138 test 
samples. The procedures (autoencoder training, hidden unit 
clustering, feature extraction and classifier training and testing) 
are repeated five times per subject, until each fold has served as 
test set for exactly once. The per-subject classification accuracy 
is averaged over five runs. The overall mean accuracy is the 
average per-subject accuracy over fifteen subjects. 

V. RESULTS AND DISCUSSIONS 
The accuracy results classifying three emotion states using 

different features are tabulated in TABLE II. Among the four 
spectral band power features, beta power performs the best. 
Theta and alpha powers give similar performance, both being 
inferior to beta and delta power. The fusion of all power features 
(combined power) does not lead to improved accuracy 
compared to beta power feature. 

The results of the proposed feature extraction method are 
displayed at the lower half of Table II, with varying number of 
clusters of hidden neurons 𝑚 from 1 to 10. When 𝑚 = 1 and 2, 
the accuracy is better than that of delta, theta, alpha powers but 
below beta power. Starting from 𝑚  = 3, the accuracy of the 
proposed feature exceeds standard power features. When 𝑚 = 4, 
the feature vector dimension is the same as combined power 
features. The accuracy of the proposed method sees a 10.12% 
increase over combined power feature. There is also a tendency 
that the classification accuracy increases with growing number 
of clusters of hidden neurons. The best accuracy is attained by 

 
Fig. 3 Proposed network structure. After an autoencoder has been 
trained, 𝑘  hidden neurons are clustered to 𝑚  groups based on the 
similarity of their weights. Neurons within the same groups carry weights 
similar to each other, thus have learnt similar components from the input. ℎ() is the output of the 𝑖th hidden neuron in cluster 𝑐. 𝑛 is the number of 
neurons belonging to cluster 𝑐 , ∑ 𝑛ୀଵ = 𝑘 . 𝑢  is the pooling neuron 
added to cluster 𝑐 . 𝑢 = ଵ ∑ ℎ()ୀଵ . 𝒖 = ሾ𝑢ଵ, 𝑢ଶ, … , 𝑢ሿୃ  is viewed as 
the feature extracted out of 𝒙. 
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the proposed method when 𝑚 = 10, a nearly 20% increment 
over theta and alpha power. However, when 𝑚 exceeds 6, the 
improvement is only marginal. It is also worth noting that a large 𝑚 value may not always be favorable, especially when the size 
of the training set is small. A larger 𝑚 value results in large-
dimensional feature vector, which requires more training data to 
fit the classifier. A limited training set increases the risk of 
overfitting when using large feature vectors. 

To see what frequency components have been chosen by the 
autoencoder, we visualize the weights of clustered hidden units 
in Fig. 4. The plots show the weights of connection between 
input layer and hidden layer of the trained autoencoder of subject 
1 in session 1 when 𝑚 = 2. We average the weights within the 
same cluster and display the positive averaged weights for each 
cluster. Generally, a connection with positive weight between 
input neuron 𝑖 and hidden neuron 𝑗 suggests that hidden neuron 𝑗  favors the input from neuron 𝑖 , whereas negative weight 

implies that hidden neuron 𝑗 opposes the input from neuron 𝑖. 
The first cluster of hidden neurons has three weight peaks at 5.5 
Hz, 13.75 Hz and 24 Hz, respectively, suggesting that this 
cluster of hidden neurons may favour theta and beta 
components. The second cluster show rather evenly distributed 
weights over the spectrum, peaking at 8.75 Hz within the alpha 
band. Some delta and higher beta components are also selected 
by the second cluster, contrary to the first cluster. 

VI. CONCLUSIONS 
Spectral band power features have been one of the most 

widely used features in BCI studies and EEG-based 
applications. On the one hand, the definition of frequency range, 
though based on neuroscientific findings, is somewhat on an ad-
hoc basis and varying between studies. On the other hand, it is 
arguable that one definition of band ranges could perform 
equally well on all subjects. In this study, we proposed to find 
the subject-specific salient frequency components using 
autoencoder. We propose a network architecture especially for 
power feature extraction out of raw periodograms of EEG 
signals. The proposed architecture consists in clustering the 
hidden neurons of a trained autoencoder with added pooling 
neuron per each cluster. The proposed method essentially 
extracts features similar to power features, but without 
predefinition of band ranges. We benchmark the proposed 
methods against standard power feature extraction method. 
Experimental results show that our proposed method yields 
better accuracy than standard power features when the number 
of hidden unit clusters 𝑚 ≥ 3. When 𝑚 = 4, the proposed method 
yields feature of the same dimension as combined power 
features, but performs better than the latter by 10.12%. The 
classification accuracy can be further improved given a larger 
value of 𝑚 , but we also see that the accuracy increment is 
marginal when 𝑚  exceeds 6. We conclude that the proposed 
method, which automatically learns the salient frequency 
components, could potentially outperform standard band power 
features, whose frequency components are explicitly defined. 
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TABLE II.  OVERALL MEAN CLASSIFICATION ACCURACY (%) 
CLASSIFYING THREE EMOTIONS (POSITIVE, NEUTRAL AND NEGATIVE) 

USING DIFFERENT FEATURES. 

Feature  Session 1 Session 2 Session 3 Average 
Delta 43.68 40.54 41.86 42.03
Theta 43.09 40.11 39.06 40.75
Alpha 41.11 40.02 39.84 40.32
Beta 50.16 50.01 48.51 49.56
Combined 
power 

44.03 40.55 41.89 42.16 

Pr
op
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ed

 m
et
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d 

𝑚 = 1 44.70 43.14 46.22 44.69 𝑚 = 2 47.23 46.65 48.66 47.51 𝑚 = 3 50.45 49.95 50.48 50.29 𝑚 = 4 52.37 50.87 53.60 52.28 𝑚 = 5 53.77 54.25 55.68 54.57 𝑚 = 6 57.07 56.92 58.41 57.47 𝑚 = 7 56.37 56.88 59.14 57.46 𝑚 = 8 56.62 57.98 58.66 57.75 𝑚 = 9 56.97 58.12 59.10 58.06 𝑚 = 10 58.19 59.24 59.66 59.03 

 

Fig. 4 Plots of averaged weights of connection between hidden neurons 
within the same cluster and input neurons. Left: cluster 1; right: cluster 2. 
Bottom horizontal axis represents the index of input neuron (117 in total). 
Each input neuron reveives the magnitude of periodogram at specific 
frequency. The frequency is noted at the top horizontal axis (1-30 Hz, 
corresponding to the 117-D periodogram at a resolution of 0.25 Hz). The 
weight indicates to what extent a specific frequency component is 
favoured by the hidden neuron. The left cluster has a strong preference for 
theta and beta components. The right cluster has preference for delta and 
higher theta components as compared to the left cluster. 


